O/E

g B NHAEERIIEITE” [HPC, DL, Business platform system, CloudB2&&i]
> 8N - BRIEHEECRSTR), DL, HEKMYE (Google, Amazon, Alibaba, MeiTuan, ...)
O BfikRs
B HAEFERBYEEF — Divide & Conquer, Model & Challenges, PCAM, Data/Task, ...
- REFRATTE

B ETINE
> i@ — BOMRIBAY3 NG 2 — Shared/Unshared Memory, Hybrid
> R — 1Y%, Modern OS, Distributed Job Scheduler, GTMZ:
O SR
® OpenMP, MPI, CUDA (DLHYZEE)), Big Data FRIMR/SparkZ (Ri$ K& 1EBig Data SDKZ _FAYYR
2, KEEASIINBNEIRE—ED)
O RFR R — BEEMFEHRICH
B FORBURAREEY
= s
B R5EEM (HTAPS)
» Flink, ClickHouse, MaxCompute, ELK ...



Chapter 5: Distributed OS

COSupport the execution of many execution units — parallel or

distributed
®
>
>

® Evolution of related frameworks/platforms
> From Amoeba [ZHZH] to Micro-services [iARSS]




OS? — Process scheduling + Synchronization

1 As roles you’ve learned from OS course
B Goal: Support the concurrent execution of many processes

M2 roles
»Resource manager + (Friendly-interface) Cooperation Monitor

Run program?

Load OS

(a collection of programs into MM)

Wait user’s choice

Prepare resources (copy program from HDD into MM),

and Execute it (Assign CPU among many programs).
During the execution, it’s that program’s task to
respond user’s mput
|

& k

Shutdown?

Cleanup & Shutdown

|1:1:m=1cpu, 1 IVIIVI
Many 10 devices




[0 OS’s programs are modularized and structured

User Mode : .. Process ] Process i
\\. ¥ / Kernel Mode . . Process
System Services | Lilrrares 8

|

File Systam

Lizer

B pere sor |
¥ Server I Server I ST I
Memory and /0 Device Management Device Dirivers

\ Micmokemel
¥

Processors) I Main Memaory I Dy I

Processor Scheduling




[0 “modularized and structured” are also the way to organize the

services to support the execution of many distributed programs

Worker,

\-

[ Master

Worker,

Worker,

J

(a) Master received the Work

Worker,

\

( Master

o O
© @

Worker,

Worker,

\

J

(b) Master dispatches work to Workers (c) Go and return between Master and Workers

-

Worker,

\

Master

Worker,

Worker, .

~

J
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Z Large Scale Computing Program 1=1TRS89FEF
O MRk, —HENRTEATSHPRIHARE

O XMt =BEE, SHRxEE—iR

" SRR, IR
B A RS e

B RS AR
B AT AR
B T REENA

EESHTFEREES

- RIS T A SEA A, BT AaE
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O XFENSZITEHRS (SMP — UMA or

@ Standby -
)@\ ‘—2?. @ A NUMA), —NOSERLEER
R B BiREITEOSZAMIE M CPUS

FIEZR AILAE

e

o (B89

B Master-Workers AL\ R 250 HFE

. 1 Pthreads, Java,
OpenMP, OpenCL, CUDA, MPIZE

OICOSEAREEIEZIF
B {ESHIDIK; 8BS, FEZ; JiiEINee

Bus or Crossbar Switch ) O ZEIIME, XRREFMNEECERBEIR T
m {8, EEFiE(Fault Tolerance){32A2EM




L5

|/ J

®

O MWFSINESH (MPP fl Cluster), SMIEBEHREEECH

Jg . A Os, o

[

w |

w |

B BWIETS R EETEARRENIRSHIE
» Distributed File, Transaction, Monitor etc.

> HEfpE—Job Schedulerg2 AR FH AEFIIHIT

L @ O oasnon B AusEROESEERRES
B — W ASRHBENEARRNHASZIIABRIEREER 2
> W—EMEE B : 2PC . 3pc. paxos. Raft, ZABZ

] v 2PC / 3PC i ATRIEE T2 2RSS F ER(ERIRTE.
r XLEED R RIBED EAERIARSS 28 L, 2PC / 3PC #l; AR
EZ 5IRS e LRRFEALEIMI], BAZERRK
v Paxos, Raft, Zab EiERTRIEE—1EUED FRIZ T EIF

Z I BEUE—EUE
5 O EEe i\ E AT
O FFiHEEESES FIAER MP, Big Data, MPI+ %




( Master ( Master \ ( Master \
' . ® O

® o0 > 0 @

Worker, Worker, Worker, Worker, Worker,

\ Worker, . / k Worker, . / \ Worker, . j

(a) Master received the Work (b) Master dispatches work to Workers (c) Go and return between Master and Workers

Worker,

[0 Many challenges
M Available resources — alive or not, busy or not?

® Cooperation under unstable circumstance —
» Serialize data access — event ordering, distributed transaction, ...
» Fault tolerance — WAL, Standby, ...



Worker,

\

Master

Worker,

Worker,

J

\

Master

®

Worker,

~
o ©

o @

Worker;

Worker,

f Master
N\

m (
Worker,

J

Worker,

\

Worker,

\

J

(b) Master dispatches work to Workers (c) Go and return between Master and Workers

B & — B R RIS

PRIR B IRV 1A B IK

(a) Master received the Work

———
w7

A NN

B ccocensn (R veasoTen

ARG BAR I e R



Chapter 5: Distributed OS

COSupport the execution of many execution units — parallel or
distributed
®

» Resource availability & Dispatching
>

® Evolution of related frameworks/platforms
> From Amoeba [ZHZH] to Micro-services [iARSS]




Master Master \ / Master \

<
Qo ® o \

\

J

\

J

\

o0 © 0 @ D | |G
Worker, Worker, Worker, Worker, Worker, Worker,
Worker, Worker, Worker,

J

(a) Master received the Work (b) Master dispatches work to Workers (c) Go and return between Master and Workers

System requirements

Cooperating safely

Load Balancing

(DRF etc.)

Resource Allocation & Monitoring

Transactional Isolation
(WAL, Snapshot, ...)

Networking

(TCP/IP, InfiniBand, etc.)

Consensus

Event Ordering

(Real time based, Lamport’s Logical Clock, ...)

(PAXOS, RAFT, Byzantine, ZAB, ..., Leader-Follower Election)




Heartbeat

ClAlive or Dead? - Heartbeat protocol

Heartbeat Protocol

fdlibX fdlibY

--AddMonitor(Y,3)- = =--~ start APP }
oL ~ : —
H generate_APP_ID() :)
—heartbeat E APPID I*
T i hb_init{init_delay, APP_ID)
- ack— | r ..... max nit delay ____
ime d"""_—)f’ E start_app(APP_ID_max_init_delay) W \pp
\L T——heartbeat C 9> h ain_Joop |
\* : - :
heartheat timeout [APP main loop]
h‘““‘“‘heartbeat ! hb piiqudelav, APP_ID)
B eeeeeeeeeeeeee. M delay before nestping -
heartbeat timeout :
| —heartbeat : S R
T ; E
heartbeat timeout - Lt AR :
| S L L S >
Y timeout : oo APRISTOI x
< - - FailureDetected(Y) : .
' done with APP B========,
: i
|

www.webseguencediagrams.com




Dominant Resource Fairness (DRF)

] A user’s dominant resource Is resource user has biggest share of

W Example:
Total resources: | scpul | 5GB |
User 1’s allocation: 2 CPU 1 GB

_______________________________ —'-'_'_'_'—\_/"_'""__"_

25% CPUs 20% RAM

Dominant resource of User 1 is CPU (as 25% > 20%)

1 A user’s dominant share: fraction of dominant resource allocated
B User 1's dominant share i1s 25%

Dominant Resource Fairness: Fair Allocation of Multiple Resource Types
Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, lon Stoica, NSDI’11




https://www.cnblogs.com/yuananyun/p/5137321.html

EE— M cpuil18GBHIESE, BFRMNER: HRARNSMISENSR (1CPU, 4GB) HR; AFBRIS/MISEERK (3CPU, 1GB) #HiR,
M XTSRRIV ECRRE?

MFEBFA, SMEEEEEENEIFRN<1/9,4/18>=<1/9,2/9> ErLIARIdominant sharesi7E, Hif5lF2/9

FBFB, 8/MISEEEENEFEN<3/9,1/18>=<1/3,1/18> ,FrLABfdominant shares’cpu, Hefii1/3

max (z,y) (Maximize allocations)
subject to
r+3y < 9 (CPU constraint)
4r +y < 18 (Memory constraint)
2x : :
5 = % (Equalize dominant shares)

Solving this problem yields* z = 3 and y = 2. Thus,
user A gets (3 CPU, 12 GB) and B gets (6 CPU, 2 GB).

BE7IASFASENLESSREPADESH TR, AFPBLERGFERE—NRENEE,



https://www.cnblogs.com/yuananyun/p/5137321.html

Chapter 5: Distributed OS

COSupport the execution of many execution units — parallel or
distributed
®

>
» Successful cooperation — circumstance is stable or not
v RPC, Event Ordering, Transaction control (2/3 PC)
v WAL, Consensus (PAXOS, RAFT, ZAB, etc.), €< Fault Tolerance (or as HA)
® Evolution of related frameworks/platforms
> From Amoeba [ZHZH] to Micro-services [iARSS]




A day in the life of an RPC

1. Client calls stub function (pushes params
onto stack)

Client machine

Client process

k = add(3, 5) -l

Client stub (RPC library)
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A day In the life of an RPC

Client calls stub function (pushes params onto stack)

2. Stub marshals parameters to a network message

Client machine

Client process
k =add(3, 5)

Client stub (RPC library)

proc: add | int: 3| int: 5 \
Client OS ‘
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A day In the life of an RPC

2. Stub marshals parameters to a network message

S8 OS sends a network message to the server

Client machine Server machine

Client process
k =add(3, 5)

Client stub (RPC library)

Client OS Server OS
proc: add | int: 3| int: 5
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A day In the life of an RPC

OS sends a network message to the server

Server OS receives message, sends it up to stub

Client machine

Client process
k =add(3, 5)

Client stub (RPC library)

Server machine

Server stub (RPC library)

Client OS

Server OS .

proc: add | int: 3_| Int: 5
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A day In the life of an RPC

4. Server OS receives message, sends it up to stub

5, Server stub unmarshals params, calls server function

Client machine Server machine
Client process Server process

k =add(3, 5) Implementation of add
Client stub (RPC library) Server stub (RPC lib} Jry)

proc: add | int: 3 |int: 5 \

Client OS Server OS
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A day In the life of an RPC

5, Server stub unmarshals params, calls server function

6. Server function runs, returns a value

Client machine Server machine
Client process Server process 2

k =add(3, 5) 8 € add(3, 5)
Client stub (RPC library) Server stub (RPC library)

Client OS Server OS
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A day In the life of an RPC

7. Server stub marshals the return value, sends msg

Client machine Server machine
Client process Server process
k =add(3, 5) 8 < add(3, 5)
Client stub (RPC library) Server stub (RPC library)
Result | int: SJ
Client OS Server OS ‘




w0 the life of

7. Server stub marshals the return value, sends msg

8. Server OS sends the reply back across the network

Client machine Server machine
Client process Server process
k =add(3, 5) 8 € add(3, 5)
Client stub (RPC library) Server stub (RPC library)
Client OS Server OS
Result | int: 8J




37

A day In the life of an RPC

8. Server OS sends the reply back across the network

9. Client OS receives the reply and passes up to stub

Client machine Server machine
Client process Server process

k =add(3, 5) 8 € add(3, 5)
Client stub (RPC library) Server stub (RPC library)

1_

Result | int: 8)

Client OS

Server OS
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A day In the life of an RPC

9, Client OS receives the reply and passes up to stub

10. Client stub unmarshals return value, returns to client

Client machine Server machine
Client process P4 Server process
k €8 8 € add(3, 5)
Client stub (I2PC library) Server stub (RPC library)
Result | int: 8})
Client OS Server OS




[0 Remote Procedure Calls (RPC)

® RPC enables a sender to communicate with a receiver using a simple
procedure call

»No communication or message-passing is visible to the programmer
® Basic RPC Approach:

Client Communication
Program Module

Communication Server
Module Procedure

int add(int

x, int y) {
return

Xty;

}

add (a,b)

Client process

Server process

Client
Stub

Server Stub
(Skeleton)



Event Ordering (Real time based, —_—
[0 Lamport’s Logical Clock (Lamport’s Clock Algorithm)

* When a message is being sent:
* Each message carries a
timestamp according to the
sender’s logical clock

* When a message is received:
* If the receiver logical clock is less
than the message sending time in ms3:69

the packet, then adjust the
. , m4:69
receiver’s clock such that: |

currentTime = timestamp + 1 ‘ |




consensus

[0 Modify concurrency control schemes for use in distributed
environment.

[0We assume that each site participates in the execution of a commit
protocol to ensure global transaction atomicity.

O We assume all replicas of any item are updated

CIWill see how to relax this in case of site failures later = Majority
Consensus (PAXOS, RAFT, ZAB, ...)




0 Majority Protocol

¥ Local lock manager at each site administers lock and unlock requests for
data items stored at that site.

¥ When a transaction wishes to lock an unreplicated data item Q residing at
site S;, a message Is sent to S;'s lock manager.

»1f Q is locked in an incompatible mode, then the request is delayed until it can be
granted.

v"More than (n/2+1) nodes respond OK

»When the lock request can be granted, the lock manager sends a message back
to the initiator indicating that the lock request has been granted




quorum3z ==
n. ¥EEAE
[0 Quorum Consensus Protocol
¥ A generalization of both majority and biased protocols
W Each site is assigned a weight.
»Let S be the total of all site weights
® Choose two values read quorum Q, and write quorum Q,,
»Suchthat Q+Q,>S and 2*Q,> S
»Quorums can be chosen (and S computed) separately for each item
® Each read must lock enough replicas that the sum of the site weights is >= Q,
® Each write must lock enough replicas that the sum of the site weights is >= Q,,
® For now we assume all replicas are written
» Extensions to allow some sites to be unavailable described later




RAFT: In Search of an Understandable Consensus Algorithm

] Raft basics: the servers 1. Leader election
B A RAFT cluster consists of B Select one of the servers to act as
several servers cluster leader
> Typically five W Detect crashes, choose new leader

W Each servercanbeinoneot 2 | og replication (normal operation)
three states B L eader takes commands from clients,

»Leader appends them to its log
>F0“0\_Nef B | eader replicates its log to other servers
»Candidate (to be the new (overwriting inconsistencies)
leader)
3. Safety

™ Followers are passive:

» Simply reply to requests
coming from their leader

® Only a server with an up-to-date log can
become leader




http://thesecretlivesofdata.com/raft/

& C 0 A TZF=| thesecretlivesofdata.com/raft/ v

The Secret Lives of Data

Raft

Understandable Distributed Consensus

Continue ¥

| Please note: this is a working draft. Click here to provide feedback.



http://thesecretlivesofdata.com/raft/

Fault Tolerance

l'~' \\ﬂ -
] Fault tolerance (WAL is fundamental) \ /
W Job scheduler is down < standby Job
scheduler Network
W Job scheduler is OK, but PU(s) is unreachable Primary Standby
< Recover Soevet

» All PUs are OK, but sub-work(s) is down

Dedicated
Link

Also referred as a
system with HA — High
Availability

e ———

= |
Additional disk device
shown for Utility Server



Fault tolerance

O 1f an EU (work) crashes
¥ Retry on another node
M If the same task repeatedly fails, end the job

1 If anode (PU) crashes

¥ Relaunch its current task on other nodes - what about task inputs? File
system replication

: : straggler < ['straegla(r)] & ['streeglar]
L1f atask is going slowly (straggler) n yups. wmmt e, simeradn. (i) 8Lt

¥ Launch second copy of task on another node
W Take the output of whichever finishes first
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- -+ Load-balancing (DRF etc.) -
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L1 Distributed Systems 3rd
edition (2017)

O Andrew S Tanenbaum,
Maarten Van Steen

",
|
|

DISTRIBUTED SYSTEMS

Principles and Favadigms

d " d&ﬁ d‘t

Andrew S.Tanenbaum
Maarten van Steen

R RER LA


https://www.biblio.com/maarten-van-steen-andrew~1683414~author

raditionally, we have DOS, NOS, Middleware

L1 DOS (Distributed Operating Systems)
L1 NOS (Network Operating Systems)

1 Middleware

System Description Main Goal
Tightly-coupled operating system for Hide and manage

DOS multi-processors and homogeneous hardware
multicomputers resources
Loosely-coupled operat!ng system for Offer local services

NOS heterogeneous multicomputers to remote dlients
(LAN and WAN)

: Additional layer atop of NOS Provide distribution
Middleware implementing general-purpose services | transparency

1 Distributed Systems 3rd
edition (2017)



https://web.cs.wpi.edu/~rek/DCS/D04/DistributedSystems.ppt

raditionally, we have DOS, NOS, Middleware

Machine A Machine B Machine C

Distributed applications

Network OS Network OS Network OS
services sernvices services
Kernel Kernel Kernel

Network

1 OSes can be different (Windows or Linux)

Ll Typical services: rlogin, rcp
W Fairly primitive way to share files



https://web.cs.wpi.edu/~rek/DCS/D04/DistributedSystems.ppt

raditionally, we have DOS, NOS, Middleware

Machine A Machine B Machine C

Distributed applications

Distributed operating system services

Kernel Kernel Kernel
Network

Ll But no longer have shared memory
™ Provide message passing

W Can try to provide distributed shared memory
» But tough to get acceptable performance



https://web.cs.wpi.edu/~rek/DCS/D04/DistributedSystems.ppt

raditionally, we have DOS, NOS, Middleware

Machine A Machine B Machine C

Distributed applications

Middleware services

Network OS5 Network OS5 Network OS
services senvices sernvices
Kernel Kernel Kernel

1 1 1

Network



https://web.cs.wpi.edu/~rek/DCS/D04/DistributedSystems.ppt

Middleware and Openness

Application Same Application
programming

- Interface

A T

— —

| N

Middleware [ » Middleware
Common

Network OS pr0t000| Network OS

Ll In.an open middleware-based distributed system, the protocols
used by each middleware layer should be the same, as well as the
Interfaces they offer to applications.

W If different, there will be compatibility issues

® If incomplete, then users will build their own or use lower-layer
services (frowned upon)



https://web.cs.wpi.edu/~rek/DCS/D04/DistributedSystems.ppt

Computer 1 Computer 2 Computer 3 Computer 4
1 |
Appl. A Application B Appl. C
1
Distributed system layer (middleware)
Local OS 1 Local OS 2 Local OS 3 Local OS 4

Network




Chapter 5: Distributed OS

COSupport the execution of many execution units — parallel or
distributed

® OS’s Primary function is to support the execution of many (distributed)
programs - Protocols
» Resource availability & Dispatching
» Successful cooperation — circumstance is stable or not

>




73 ® 273 Ik 739
3 m 5% @ 3 B g8
i ° | 5 0 OS’s goal —no
| T | | | :
s g c | s s matter what kinds
' ® Inspired by Moore’s Law till around 2016 :
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. "Nl :
Q 20 :
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0 Modern OS is OK for single computer — either multi-core or GPGPU
(with GPU’s SDK)

B Maybe a more module for Load balance

Consensus

Transactional Isolation
(WAL, Snapshot, ...)

Heartbeat Event Ordering
(RMI, gRPC (Real time based, Lamport’s Logical Clock, ...)

Networking
(TCP/IP, InfiniBand, etc.)

Load Balancing

HA (High Availability)

(DRF etc.) (PAXOS, RAFT, Byzantine, ZAB, ..., Leader-Follower Election)

System requirement

Cooperating safely

Resource Allocation & Monitoring

Fault Tolerance

DR (Disaster Recovery)

Backup(Replication)

Stream Processor (core)
Streaming Streaming
Processor Processor Processor Processor N Multiprocessor Multiprocessor
e | Registers | | Registers |
2
- N 5P | [P |
= w
s @
: WS | | (o) (5] | | [50a) [
— ‘E I Shared Memory | | Shared Memory |
GPU =
. Z SM sme,  §
Bus or Crossbar Switch & : =




[0 Computers cooperate together
m Different protocols for different systems (Storage systems, or other )

L Balancin Transactional Isolatlon Consensus . o
oad Balancing . . HA (High Availability)
(DRF etc.) (WAL, Snapshot, . (PAXOS, RAFT, Byzantine, ZAB, ..., Leader-Follower Election)
System requirements

- Heartbeat Event Ordering Fault Tolerance
Cooperating safely (RMmI, QRPC (Real time based, Lamport’s Logical Clock, ...) DR (Disaster Recovery)

- Networking Backup(Replication)

Resource Allocation & Monitoring (TCP/I P, InfiniBand, etc.)

Interconnection Network (Dedicated)

Processor Processor Processor Processor

Cache

Bus Bus Bus Bus




0 DOS = Distributed OS? Not sure for this term.

[0Job scheduler acts as the role of a modern OS for single computer
® All the other functions exist as services
m Like Microkernel OS idea but services are distributed

I Network
Server
\ |

User

Kernel

~ | Microkernel «— —

—> Send

-—— Reply Hardware




O Usually all functions (DOS) are implemented as many programs
scattered in a cluster of computers
Job Scheduler

OMaster . . . . . . .

O @ @@ ©® © 9o ®
File System . . . .
Worker . . .

Different color means .
different service . . . . . . .

Cache

Attention: one node may contain several functions, such as FS’s master node could also
provide computing service, or is used as part of Cache




We have a big pict

1945, Von Neumann architecture

- 1946 ENIAC
1960, LARC | - designed for multiprocessing,
with 2 CPUS and a separate l/O procesq
1960, SAGE

SAGE ( Ground

ure

Jor (Should be SIEISESNIESH

connects 23 hardened computer sites in the US and ¢

The air defense system used two AN/FS|

1961, IBM 7030
Many of the ideas developed for lhe 703(
the 8-bit byte, il

D-7 computers, each of which used a full megawatt of powej

Communication

- Telecommunication
anada.
to drive its 55,000 vacuum tubes, 175,000 diodes and 13,000 transistors.

memory

were used e ip!
i and memory interleaving were u

1961, PDP-1 | - Miiil Computer
sells for about $120,000, includes a cath:
needs no air conditioning and requires o
1962, D825 | -4 proce cted via a crossbar
2years Ialer l|5 delivered to USA Military|
1962, IBM 7094 | - IBM's last commercial scientific
1962, MIT LINC | - an early and important example of a
‘personal computer (B@)', that is,
a computer designed for only one user.
1964, IBM 360

1965, DEC PDP-7 | - 1* version of UNIX is compiled on this

1970, IBM 370

1971, Intel 4004 | - [EISHSCEY!
CISC — Complex Instruction Set Computdr,

- a landmark step in the development
of personal computers (Bg)

- one of the first machines to use a
vector processor (CPU+Vector)
Vector era begins!

1973, minicomputer Xerox Alto

1974, CDC-Star 100

1976, Cray-1 - FUA7 9 A (P ] Bk L
1977, MOSIX
1979 £, Unixv7 #
i chroot' y
1980, MS-DOS
1980, IBM 801 | - I#MGHEFIRISE system was created b}
RISC - Reduced Instruction Set Computs
The inventor’s project began in 1975, and
1981, 1BM PC 1981, Ameoba

1981, Osborne 1 | -the first mass-produced

1982 DHGINBAGRGPY - Color Television Interface AdaptorfCTIA) and its successor Graphic Television |

1991 Mark Weiser's paper on ubiquitous computing, “The Computer of the 21st Century”,

y . 1984-86, MINIX
as well as academic venues such as UbiComp and PerCom produced the contemporary vision pf loT
1984 IBM Professional Graphics Controller was one of
the very first 2D/3D graphics accelerators available for thq IBM PC

1984-86, Chorus
1984, Mac OS GUI

1984 — GHISEER of 160 Apollo workstations by NSA 1984, GNU Project

and

de ray tube graphic display, paper tape input/output,
ly one operator; all of which become standards for minicom

- SMS (Simple Batch System) cards
using alloy-junction transistors
Fortran Monitor System (FMS), UMES, IBSYS
- 1962: CTSS (Compatible Time-Sharing System)
- 1962: Paging proposed in Atlas computer
-1964: MULTICS @ MIT
(MULTiplexed Information and Computing Service)
- 0S/360 “The Myth of Man-Month™
Batch system first; later Time-sharing (but too slow, thy

- DECSYS-7
1967, ARPANET

- VM/370 Virtual Machine Monitor
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1973,

fiit S
x Alto computer

1973, Ethernet

- It has its own OS, Compiler etc.
HuaWei now follows similar strategy
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- It has its own OS, Compiler etc.

~MOSIX (Multicomputer Operating System Interface of U
Initially, the system extended BSD/OS system calls for rd
The MOSIX pvolecl is still active as of 2011, with 10 vers|

- Beowulf %40l 14
DL
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- a local-area network (LAN) protocol by
Robert Metcalfe and David Boggs

IX) is a distributed operating system that was developed at Hebrew University in 1977.
jsource sharing in Pentium clusters. In 1999, the system was redesigned to run on Linux clusters built with x86 platforms.
bns released over the years. The latest version, MOSIX2, is compatible with Linux 2.6.
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02 when its originator MOSIX was licensed under exclusive legal rights of Moshe Bar the copyright holder. It was a free cluster management system that provided single-syst
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rmer ix code.

John Cocke
r, W RS R
it was completed in the form of the IBM 801 processor in 1

https://history-computer.com/r

- BB, 155G 4L HLE(CPU Pool)
(1 DA T T RIS — %
‘MHL..UNIX. ARl

terface Adaptor(GTIA) are custom chips used in the Atari 8
1983, DNS

65 K f JMmlx (mlnl Umx)icﬂ
15, 19867 50
f 4 i 4 B0 M

4 Minix A
- iLH A i f)Micro Kernel+VM,
- Macintosh operating systems

- Richard Mathew Stallman
HHGRANAE R #R % O disfr,

I kL T,
#1l Ameoba - {

Lg St

Wl

JU- 55 1L e ol ) 52 2 £

thing-you-need-to-know;

bit family of computers and in the Atari 5200 home video game console

- Domain Name Service was proposed
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Fi kA7 TP2P. Grid computing %

SR 5
INIX

FGNUX ikl

eg.

work distribution among nodes.

80. However, the term RISC was coined by David Patterson between 1980 and 1984 as the name of the project that he led at the University of California at Berkeley. Patterson’s philosophy was similar to Cocke's in that he sought to create a more efficient computer processor architecture



0 Modern OS for single computer system

1962, IBM 7094 - IBM's last commercial scientific - SMS (Simple Batch System) cards
using alloy-junction transistors

1962, MITLINC - an early and important example of a Fortran Monitor System (FMS), UMES, IBSYS
'personal computer (P€), that is, - 1962: CTSS (Compatible Time-Sharing System)

a computer designed for only one user. - 1962: Paging proposed in Atlas computer
- 1964: MULTICS @ MIT

(MULTiplexed Information and Computing Service)

1964, IBM 360 - ©S5/360 “The Myth of Man-Month” https://en.wikipedia.org/wiki/Virtual _machine
Batch system first; later Time-sharing (but too slow, therefore not practical) also with hardware emulation (Virtual Machine)

1965, DEC PDP-7 - 1%tversion of UNIX is compiled on this - DECSYS-7
1981, Ameoba - fNEZ, FHEHK—41PL25(CPU Pool) & H i R
(B4 e H MR DI — R %
MIEABEUNIX, BA R
- VM/370 Virtual Machine Monitor 1986, Mach - 2%l Ameoba — )39 T-UNIX: 85 —EQOSE Fil 4y Bl
HENL, RIS XA RS, REATNET

UNIX

1970, IBM 370

[ ] Latel' - Linus Torvalds
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»Mac OS, Windows, Linux, Android, EulerOS, it ] DA7EIntel {9386 KL 2% |- [HiiZ4T )
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D JO b SC h ed u | ers 1996, Globus, SOA - Service Oriented Architecture: —/N 2 {25 7Y,
YN T IAFR IR e (FROAIRS #1775,

1989, PVM - Parallel Virtual Machine Fr i IX S AR 55 2 8] € R I A2 ATEIMSUER SRR
W T LML ME 52 R AT % 1 Globus is an easy-to-use, high-performance data transfer to
B, E—EMNES — RS EAE)G,
My e O A OSHI P A T fg

1991, PBS - Portable Batch System as job scheduler for UNIX Cluster
allocate computational tasks, i.e., batch jobs, among the available computing resources, which is often used in conjunction with Ul
3 current versions - OpenPBS, TORQUE and PBS Professional (PBS Pro)

1992, LSF - Load Sharing Facility
IBM Spectrum LSF is a workload management platform,
job scheduler, for distributed HPC by IEM
based on the Utopia research project
“Utopia: a Load Sharing Facility for Large, Heterogeneous Distributed Computer Systems”

2000, SGE - sun Grid Engine
Sun acquired Gridware a privately owned commercial vendor of advanced computing resource management softwa
Later that year, Sun offered a free version of Gridware for Solaris and Linux, and renamed the product Sun Grid Enc

2003, SLURM - SLURM: Simple Linux Utility for Resource Management
2003~2004, Google’s Borg - Paper published in 2015 "Large-scale cluster management at Google with Borg” 32 #f MPI. MRZ:

Google 1] % —4{ (Monolithic - t1 9t ) ££#%E # Borg




2012, YARN  -2012 4 8 f] Apache Hadoop YARN Hi/y Apache Hadoop HJ—/~#r Tl H ,
PRAE 7 A o i A U S A A U8 FRELE, A K Hadoop MapReduce, 1ff H3# MPI, [&/4b3, 7E4Hi%% (Htln Spark. Storm. HBase) 2%

- Omega: flexible, scalable schedulers for large compute clusters. SIGOPS European Conference on Computer Systems (EuroSys), ACM, Prague, Czech Republic (2013), pp.
IR (Shared-state), JEBorglfIZEffi. {H[X A Docker [1)-k#4, RIRHELA I K8s

2014, Docker Swarm - Docker Swarm J& Docker 24 5] /£ 2014 5 12 A KA —EE P Docker /A T. B

2014, Google’s Kubernetes (K8s) - 5 - f{ x()=:{ (Two-level)
It works with a range of container tools and runs containers in a cluster, often with images built using Docker.

Many cloud services offer a Kubernetes-based platform or infrastructure as a service (PaaS or |1aaS) on which Kubernetes can be deployed as a platform-providing service.

2013, Google’s Omega
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Overview

- Amoeba - 1981

IPC -> RPC 1985
- ORB (CORBA) 1991
-2 MPI1 1992
- Cluster Beowulf 1994
2> GRID Globus 1998
-> Linux SLURM 2003 (Linux Cluster Project)
- Google’s Borg 2003~2004
- Big Data’s
- MR (2004)
- Mesos (2009 C++), YARN (2012 Java 77MB),
- Kubernetes 2015 Go 40MB
- Swarm with Docker 2016 Go 2MB
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https://www.cnblogs.com/ee900222/p/docker 2.html

Mesos — 2009 (while still named Nexus)

Hadoop
scheduler

MPI

scheduler

Mesos
master

master

Mesos slave| | Mesos slave

Hadoop

task ‘

MPI

executor executor

task \

Mesos slave

Hadoop
executor

MPI
executor

task

task

- ZooKeeper
quorum


https://www.cnblogs.com/ee900222/p/docker_2.html
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Mesos Architecture: Example

Slaves continuously
send status updates
about resources

Framework executors
launch tasks and may

~

\_ ) ‘
SlaveS1 persist across tasks )
k. ter
&35, < 2GB>
Slave S2 3 Ty
1
task 2 - §3.0.6C ) <
$2:<8CPU,16GB> | task 16y, * 4G
' GGB_\
)
Slave S3

Pluggable scheduler to
pick framework to
send an offer to

(Framework scheduler\

selects resources and

provides tasks

=

\_




Why does it Work?

A framework can wait for offer that matches its constraints or
preferences, reject otherwise

COExample: Hadoop’s job input is blue file

- Accept: both S2
and S3 store the
blue file

\_ J




Two Key Questions

COHow long does a framework need to wait?
— Depends on distribution of task duration

— “Pickiness” of framework given hard/soft constraints

COHow allocate resources of different types?
— Use DRF!




Dominant Resource Fairness (DRF)

[0 A user’s dominant resource is resource user has biggest share of

— Example:
Totalresources: | 8CPU| | 5GB |
User 1’s allocation: 2CPU| 1GB

Dominant resource of User 1 is CPU (as 25% > 20%)

1 A user’s dominant share: fraction of dominant resource allocated

— User 1's dominant share is 25%

Dominant Resource Fairness: Fair Allocation of Multiple Resource Types
Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, lon Stoica, NSDI'11




An Example

Ca system with of 9 CPUs, 18 GB RAM

CdTwo users, where
M user A runs tasks with demand vector <1 CPU, 4 GB>
M and user B runs tasks with demand vector <3 CPUs, 1 GB> each.

CODominant share:
A:2/9 (memory) B:1/3 (CPU)




Dominant Resource Fairness (DRF)

O Apply max-min fairness to dominant shares

[0 Equalize the dominant share of the users. Example:
— Total resources: <9 CPU, 18 GB>

— User 1demand: <1 CPU, 4 GB>; domres: I[TI€IT1 (1/9 < 4/18)
— User 2 demand: <3 CPU, 1 GB>; domres: CPU (3/9 > 1/18)




COWith this allocation, each user ends up with the same

dominant share, I.e., user A gets 2/3 of RAM, while user B
gets 2/3 of the CPUs.

C0This allocation can be computed mathematically as follows.

CLet x and y be the number of tasks allocated by DRF to
users A and B

max (z, y) (Maximize allocations)
subject to
r+3y < 9 (CPU constraint)
dr +y < 18 (Memory constraint)
2x 1y

5 3 (Equalize dominant shares)




https://www.cnblogs.com/yuananyun/p/5137321.html

EE— M cpuil18GBHIESE, BFRMNER: HRARNSMISENSR (1CPU, 4GB) HR; AFBRIS/MISEERK (3CPU, 1GB) #HiR,
AMAXFME AT — Ao ECRRE?

MFRBRFA, SMEEEEEENEFRRN<1/9,4/18>=<1/9,2/9> ErLIABIdominant shareskhiR7E, HfilF2/9
WFHEFB, 8/MIESEEEENEFEN<3/9,1/18>=<1/3,1/18>,FrABfdominant shares’scpu, tefia1/3

max (z,y) (Maximize allocations)
subject to
r+3y < 9 (CPU constraint)
4z +y < 18 (Memory constraint)
2 |
g = % (Equalize dominant shares)

Solving this problem yields?* z = 3 and y = 2. Thus,
user A gets (3 CPU, 12 GB) and B gets (6 CPU, 2 GB).

BYZIANEFRAEYLECESEPASESHFER, APBLER2HTRE—NRFANEE,



https://www.cnblogs.com/yuananyun/p/5137321.html

https://www.cnblogs.com/yuananyun/p/5137321.html

Algorithm 1 DRF pseudo-code

B = {F1~Tm) > total resource capacities
C ={(c1,--+,¢,) > consumed resources, initially 0
s; (z=1..n) puser:’s dominant shares, initially 0
U; = (ui1, +,uim) (2 =1..n) >resources given to
user z, initially 0

pick user ¢ with lowest dominant share s;

D; + demand of user z’s next task
if C + D; < R then

C=C+D; > update consumed vector
U; =U; + D; > update 2’s allocation vector
s; = max?™  {u; ;/r;)

else
return > the cluster 1s full

end if



https://www.cnblogs.com/yuananyun/p/5137321.html

Kubernetes — 2015
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https://www.dasher.com/containers-os-
virtualization-to-workload-virtualization/

kubect!



https://www.dasher.com/containers-os-virtualization-to-workload-virtualization/
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Summary

Hadoop/MR TiDB/TiKV Greenplum/GaussDB/HAWQ YARN, Mesos, K8s,...
Load Balancing J| Transactional Isolation Consensus , e
: (DRF etc.) (PAXOS, RAFT, Byzantine, ZAB, ..., Leader-Follower Election) HA (ngh Ava|lab|I|ty)
System requirements

Heartbeat Event Ordering Fault Tolerance
Cooperating safely (RMI, gRPC (Real time based, Lamport’s Logical Clock, ...) DR (Disaster Recovery)

- Networking Backup(Replication)

Resource Allocation & Monitoring (TCP/I P, InfiniBand, etc.)




