
大
纲 前言

◼为什么需要“大规模计算” [HPC, DL, Business platform system, Cloud已经合流]

➢导入 – 科学计算(天气预报)，DL, 互联网平台(Google, Amazon, Alibaba, MeiTuan, …)

基础篇
◼ 并发程序的样子 – Divide & Conquer, Model & Challenges, PCAM, Data/Task, …

➢天气预报的计算

◼ 运行环境

➢硬件 – 自己梳理的3个方案 – Shared/Unshared Memory, Hybrid

➢系统软件 – 协议栈, Modern OS, Distributed Job Scheduler, GTM等

算法级篇
◼ OpenMP, MPI, CUDA (DL的实现), Big Data 中的MR/Spark等 (只涉及在Big Data SDK之上的编
程；大数据本身的介绍放到后一部分)

系统级篇 – 互联网平台的实现

◼ “秒杀”的技术架构

◼ 计算广告

◼ 系统架构 (HTAP等)

➢ Flink, ClickHouse, MaxCompute, ELK …

7

Chapter 5: Distributed OS

Support the execution of many execution units – parallel or

distributed

⚫OS’s Primary function is to support the execution of many (distributed)
programs - Protocols

➢Resource availability & Dispatching

➢Successful cooperation – circumstance is stable or not

⚫Evolution of related frameworks/platforms

➢From Amoeba [变形虫] to Micro-services [微服务]

8

OS? – Process scheduling + Synchronization

As roles you’ve learned from OS course

◼Goal: Support the concurrent execution of many processes

◼ 2 roles

➢Resource manager + (Friendly interface) Cooperation Monitor

9

OS’s programs are modularized and structured

10

“modularized and structured” are also the way to organize the

services to support the execution of many distributed programs

14

借助生活中的例子来理解 Large Scale Computing Program 运行时的样子

也就是说，一群算力单元要为许多用户的并发程
序进行服务

类似社会团体，算力单元群一般
◼ 有一个对外的服务节点

➢负责管理可用的算力节点

◼ 当有任务提交时，服务节点根据任务的工作量选择适当
的算力节点协同完成计算

➢过程中服务节点与算力节点间，甚或算力节点间有交
互的协同要求(彼此往复发送信息)

类似社会团体，算力单元群也可能不稳定
◼ 服务节点损坏

◼ 算力节点损坏

◼ 节点间通讯不畅

◼ 。。。

15

对于单机多核计算机系统 (SMP – UMA or

NUMA)，一个OS管理全部的资源
◼包括运行着OS之外的其他 CPUs

◼Master-Workers 可以是线程或进程

◼用户计算程序框架可以使用 Pthreads, Java,
OpenMP, OpenCL, CUDA, MPI等

现代OS基本能够支持
◼任务的分派；通信；同步；死锁等功能

发展到现在，这类系统故障率已经很低了
◼但，考虑容错(Fault Tolerance)仍然是有价
值的

16

 对于多机系统 (MPP 和 Cluster)，每个物理节点都有自己的
OS，

◼ 每个物理节点上运行着不同角色的服务进程

➢Distributed File, Transaction, Monitor etc.

➢其中有一个Job Scheduler管理用户并发程序的执行

 任务的分派；同步；死锁等功能有相应的服务进程群提供支持

◼ 一如人类社团内由不同的小群体实现不同的职能划分

➢如一致性算法包括：2PC 、 3pc 、 paxos 、 Raft、ZAB等

✓ 2PC / 3PC 协议用于保证属于多个数据分片上操作的原子性。
这些数据分片可能分布在不同的服务器上，2PC / 3PC 协议保
证多台服务器上的操作要么全部成功，要么全部失败

✓ Paxos、Raft、Zab 算法用于保证同一个数据分片的多个副本
之间的数据一致性

 容错是需要认真对待的问题！

 用户计算程序框架可以使用 MPI, Big Data, MPI+ 等

Many challenges

◼Available resources – alive or not, busy or not?

◼Cooperation under unstable circumstance –

➢Serialize data access – event ordering, distributed transaction, …

➢Fault tolerance – WAL, Standby, …

23

Chapter 5: Distributed OS

Support the execution of many execution units – parallel or

distributed

⚫OS’s Primary function is to support the execution of many (distributed)
programs - Protocols

➢Resource availability & Dispatching

➢Successful cooperation – circumstance is stable or not

⚫Evolution of related frameworks/platforms

➢From Amoeba [变形虫] to Micro-services [微服务]

25

Heartbeat

Alive or Dead? - Heartbeat protocol

26

 A user’s dominant resource is resource user has biggest share of

◼ Example:

Total resources:

User 1’s allocation:

Dominant resource of User 1 is CPU (as 25% > 20%)

 A user’s dominant share: fraction of dominant resource allocated

◼ User 1’s dominant share is 25%

Dominant Resource Fairness (DRF)

5 GB

1 GB

20% RAM

8 CPU

2 CPU

25% CPUs

Dominant Resource Fairness: Fair Allocation of Multiple Resource Types

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, Ion Stoica, NSDI’11

27

https://www.cnblogs.com/yuananyun/p/5137321.html

https://www.cnblogs.com/yuananyun/p/5137321.html

28

Chapter 5: Distributed OS

Support the execution of many execution units – parallel or

distributed

⚫OS’s Primary function is to support the execution of many (distributed)
programs - Protocols

➢Resource availability & Dispatching

➢Successful cooperation – circumstance is stable or not

✓RPC, Event Ordering, Transaction control (2/3 PC)

✓WAL, Consensus (PAXOS, RAFT, ZAB, etc.),  Fault Tolerance (or as HA)

⚫Evolution of related frameworks/platforms

➢From Amoeba [变形虫] to Micro-services [微服务]

29

1. Client calls stub function (pushes params

onto stack)

A day in the life of an RPC

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

30

1. Client calls stub function (pushes params onto stack)

2. Stub marshals parameters to a network message

A day in the life of an RPC

30

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

proc: add | int: 3 | int: 5

31

2. Stub marshals parameters to a network message

3. OS sends a network message to the server

A day in the life of an RPC

31

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server OS

proc: add | int: 3 | int: 5

32

3. OS sends a network message to the server

4. Server OS receives message, sends it up to stub

A day in the life of an RPC

32

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5

33

4. Server OS receives message, sends it up to stub

5. Server stub unmarshals params, calls server function

A day in the life of an RPC

33

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

Implementation of add

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5

34

5. Server stub unmarshals params, calls server function

6. Server function runs, returns a value

A day in the life of an RPC

34

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

8  add(3, 5)

Server stub (RPC library)

Server OS

35

6. Server function runs, returns a value

7. Server stub marshals the return value, sends msg

A day in the life of an RPC

35

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

8  add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

36

7. Server stub marshals the return value, sends msg

8. Server OS sends the reply back across the network

A day in the life of an RPC

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

8  add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

37

8. Server OS sends the reply back across the network

9. Client OS receives the reply and passes up to stub

A day in the life of an RPC

37

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

8  add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8

38

9. Client OS receives the reply and passes up to stub

10. Client stub unmarshals return value, returns to client

A day in the life of an RPC

38

Client machine

Client process

k  8

Client stub (RPC library)

Client OS

Server machine

Server process

8  add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

39

Remote Procedure Calls (RPC)

◼RPC enables a sender to communicate with a receiver using a simple
procedure call

➢No communication or message-passing is visible to the programmer

◼Basic RPC Approach:

Machine B – ServerMachine A – Client

int add(int

x, int y) {

return

x+y;

}

…
add(a,b)

;

…

Client
Stub

Server Stub
(Skeleton)

Communication
Module

Client
Program

Server
Procedure

Communication
Module

Client process Server process

Request

Response

40

Event Ordering (Real time based, Lamport’s Logical Clock, …)

Lamport’s Logical Clock (Lamport’s Clock Algorithm)

• When a message is being sent:
• Each message carries a
timestamp according to the
sender’s logical clock

• When a message is received:
• If the receiver logical clock is less

than the message sending time in
the packet, then adjust the
receiver’s clock such that:

currentTime = timestamp + 1

0

6

12

18

24

30

36

42

48

54

60

0

8

16

24

32

40

48

56

64

72

80

0

10

20

30

40

50

60

70

80

90

100

P1 P2 P3

m3:60

61
m4:69

54

69

77

85

70

76

41

Consensus

Modify concurrency control schemes for use in distributed

environment.

We assume that each site participates in the execution of a commit

protocol to ensure global transaction atomicity.

We assume all replicas of any item are updated

Will see how to relax this in case of site failures later → Majority

Consensus (PAXOS, RAFT, ZAB, …)

42

Majority Protocol

◼ Local lock manager at each site administers lock and unlock requests for
data items stored at that site.

◼When a transaction wishes to lock an unreplicated data item Q residing at
site Si, a message is sent to Si’s lock manager.

➢If Q is locked in an incompatible mode, then the request is delayed until it can be
granted.

✓More than (n/2+1) nodes respond OK

➢When the lock request can be granted, the lock manager sends a message back
to the initiator indicating that the lock request has been granted

43

Quorum Consensus Protocol

◼A generalization of both majority and biased protocols

◼Each site is assigned a weight.

➢Let S be the total of all site weights

◼Choose two values read quorum Qr and write quorum Qw

➢Such that Qr + Qw > S and 2 * Qw > S

➢Quorums can be chosen (and S computed) separately for each item

◼Each read must lock enough replicas that the sum of the site weights is >= Qr

◼Each write must lock enough replicas that the sum of the site weights is >= Qw

◼ For now we assume all replicas are written

➢Extensions to allow some sites to be unavailable described later

quorum英 [ˈkwɔːrəm] 美 [ˈkwɔːrəm]

•n. 法定人数

44

RAFT: In Search of an Understandable Consensus Algorithm

1. Leader election

◼Select one of the servers to act as
cluster leader

◼Detect crashes, choose new leader

2. Log replication (normal operation)

◼ Leader takes commands from clients,
appends them to its log

◼ Leader replicates its log to other servers
(overwriting inconsistencies)

3. Safety

◼Only a server with an up-to-date log can
become leader

Raft basics: the servers

◼A RAFT cluster consists of
several servers

➢Typically five

◼Each server can be in one of
three states

➢Leader

➢Follower

➢Candidate (to be the new
leader)

◼ Followers are passive:

➢Simply reply to requests
coming from their leader

45

http://thesecretlivesofdata.com/raft/

http://thesecretlivesofdata.com/raft/

46

Fault Tolerance

 Fault tolerance (WAL is fundamental)

◼ Job scheduler is down  standby Job
scheduler

◼ Job scheduler is OK, but PU(s) is unreachable
 Recover

➢All PUs are OK, but sub-work(s) is down

Also referred as a

system with HA – High

Availability

47

Fault tolerance

 If an EU (work) crashes

◼Retry on another node

◼ If the same task repeatedly fails, end the job

 If a node (PU) crashes

◼Relaunch its current task on other nodes - what about task inputs? File
system replication

 If a task is going slowly (straggler)

◼ Launch second copy of task on another node

◼ Take the output of whichever finishes first

straggler 英 [ˈstræɡlə(r)] 美 [ˈstræɡlər]

n. 流浪者；落伍的士兵；离群的动物；[植] 蔓生的枝叶

51

52

前人的总结 – “雾里看花”的感觉

Distributed Systems 3rd

edition (2017)

Andrew S Tanenbaum,

Maarten Van Steen

https://www.biblio.com/maarten-van-steen-andrew~1683414~author

53

Traditionally, we have DOS, NOS, Middleware

 DOS (Distributed Operating Systems)

 NOS (Network Operating Systems)

Middleware

System Description Main Goal

DOS
Tightly-coupled operating system for
multi-processors and homogeneous
multicomputers

Hide and manage
hardware
resources

NOS
Loosely-coupled operating system for
heterogeneous multicomputers
(LAN and WAN)

Offer local services
to remote clients

Middleware
Additional layer atop of NOS
implementing general-purpose services

Provide distribution
transparency

https://web.cs.wpi.edu/~rek/DCS/D04/DistributedSystems.ppt

https://web.cs.wpi.edu/~rek/DCS/D04/DistributedSystems.ppt

55

Traditionally, we have DOS, NOS, Middleware

 OSes can be different (Windows or Linux)

 Typical services: rlogin, rcp

◼ Fairly primitive way to share files

https://web.cs.wpi.edu/~rek/DCS/D04/DistributedSystems.ppt

https://web.cs.wpi.edu/~rek/DCS/D04/DistributedSystems.ppt

56

Traditionally, we have DOS, NOS, Middleware

 But no longer have shared memory

◼ Provide message passing

◼ Can try to provide distributed shared memory

➢ But tough to get acceptable performance

https://web.cs.wpi.edu/~rek/DCS/D04/DistributedSystems.ppt

https://web.cs.wpi.edu/~rek/DCS/D04/DistributedSystems.ppt

57

Traditionally, we have DOS, NOS, Middleware

https://web.cs.wpi.edu/~rek/DCS/D04/DistributedSystems.ppt

https://web.cs.wpi.edu/~rek/DCS/D04/DistributedSystems.ppt

58

Middleware and Openness

 In an open middleware-based distributed system, the protocols
used by each middleware layer should be the same, as well as the
interfaces they offer to applications.

◼ If different, there will be compatibility issues

◼ If incomplete, then users will build their own or use lower-layer
services (frowned upon)

https://web.cs.wpi.edu/~rek/DCS/D04/DistributedSystems.ppt

https://web.cs.wpi.edu/~rek/DCS/D04/DistributedSystems.ppt

59

60

Chapter 5: Distributed OS

Support the execution of many execution units – parallel or

distributed

⚫OS’s Primary function is to support the execution of many (distributed)
programs - Protocols

➢Resource availability & Dispatching

➢Successful cooperation – circumstance is stable or not

⚫Evolution of related frameworks/platforms

➢From Amoeba [变形虫] to Micro-services [微服务]

OS’s goal – no

matter what kinds

of computer

systems

◼Support the
concurrent
execution of many
programs

Roles

◼Resources
manager

◼Cooperation
monitor

62

Modern OS is OK for single computer – either multi-core or GPGPU

(with GPU’s SDK)

◼Maybe a more module for Load balance

63

Computers cooperate together

◼Different protocols for different systems (Storage systems, or other)

64

DOS – Distributed OS? Not sure for this term.

Job scheduler acts as the role of a modern OS for single computer

◼All the other functions exist as services

◼ Like Microkernel OS idea but services are distributed

65

Usually all functions (DOS) are implemented as many programs

scattered in a cluster of computers

66

We have a big picture

67

Modern OS for single computer system

◼ Later

➢Mac OS, Windows, Linux, Android, EulerOS, 龙蜥

68

Job schedulers

69

70

Overview

→ Amoeba – 1981

IPC → RPC 1985

→ ORB (CORBA) 1991

→ MPI 1992

→ Cluster Beowulf 1994

→GRID Globus 1998

→ Linux SLURM 2003 (Linux Cluster Project)

→ Google’s Borg 2003~2004

→ Big Data’s

→ MR (2004)

→ Mesos (2009 C++), YARN (2012 Java 77MB),

→ Kubernetes 2015 Go 40MB

→ Swarm with Docker 2016 Go 2MB

→ Micro Service (微服务) 2016

73

Mesos – 2009 (while still named Nexus)

https://www.cnblogs.com/ee900222/p/docker_2.html

https://www.cnblogs.com/ee900222/p/docker_2.html

74

75

Hadoop
JobTracker

Spark
JobTracker

8CPU, 8GB

Hadoop
Executor

MPI executor

task 1

task 1

8CPU, 16GB

16CPU, 16GB

Hadoop
Executor

task 2

Allocation
Module

S1 <8CPU,8GB>

S2 <8CPU,16GB>

S3 <16CPU,16GB>

S1 <6CPU,4GB>

S2 <4CPU,12GB>

S1 <2CPU,2GB>

S2:<8CPU,16GB>

Slaves continuously
send status updates

about resources

Pluggable scheduler to
pick framework to

send an offer to

Framework scheduler
selects resources and

provides tasks

Framework executors
launch tasks and may

persist across tasks

task 2:<4CPU,4GB>

Slave S1

Slave S2

Slave S3

Mesos Master

Mesos Architecture: Example

76

A framework can wait for offer that matches its constraints or

preferences, reject otherwise

Example: Hadoop’s job input is blue file

S1

S2

S3

Reject: S1 doesn’t
store blue file

Hadoop
(Job tracker)

Mesos
master

Why does it Work?

Accept: both S2
and S3 store the

blue file

77

Two Key Questions

How long does a framework need to wait?

– Depends on distribution of task duration

– “Pickiness” of framework given hard/soft constraints

How allocate resources of different types?

– Use DRF!

78

 A user’s dominant resource is resource user has biggest share of

– Example:

Total resources:

User 1’s allocation:

Dominant resource of User 1 is CPU (as 25% > 20%)

 A user’s dominant share: fraction of dominant resource allocated

– User 1’s dominant share is 25%

Dominant Resource Fairness (DRF)

5 GB

1 GB

20% RAM

8 CPU

2 CPU

25% CPUs

Dominant Resource Fairness: Fair Allocation of Multiple Resource Types

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, Ion Stoica, NSDI’11

79

An Example

a system with of 9 CPUs, 18 GB RAM

Two users, where

◼user A runs tasks with demand vector <1 CPU, 4 GB>

◼and user B runs tasks with demand vector <3 CPUs, 1 GB> each.

Dominant share:

A:2/9 (memory) B:1/3 (CPU)

80

 Apply max-min fairness to dominant shares

 Equalize the dominant share of the users. Example:

– Total resources: <9 CPU, 18 GB>

– User 1 demand: <1 CPU, 4 GB>; dom res: mem (1/9 < 4/18)

– User 2 demand: <3 CPU, 1 GB>; dom res: CPU (3/9 > 1/18)

User 1

User 2

100%

50%

0%
CPU

(9 total)

mem

(18 total)

3 CPUs 12 GB

6 CPUs

2 GB

66%
66%

Dominant Resource Fairness (DRF)

81

With this allocation, each user ends up with the same

dominant share, i.e., user A gets 2/3 of RAM, while user B

gets 2/3 of the CPUs.

This allocation can be computed mathematically as follows.

Let x and y be the number of tasks allocated by DRF to

users A and B

82

https://www.cnblogs.com/yuananyun/p/5137321.html

https://www.cnblogs.com/yuananyun/p/5137321.html

83

https://www.cnblogs.com/yuananyun/p/5137321.html

https://www.cnblogs.com/yuananyun/p/5137321.html

85

Kubernetes – 2015

86

87

89

https://www.dasher.com/containers-os-

virtualization-to-workload-virtualization/

https://www.dasher.com/containers-os-virtualization-to-workload-virtualization/

90

HuaWei Donau

https://www.qtumist.com/post/12516

https://www.qtumist.com/post/12516

91

Alibaba ACK Anywhere

“刚开始是比较艰难的，
尝试过好多版本，包括
Sigma on Kubernetes、
Kubernetes on Sigma 等
方式，最后还是决定用最
标准、最原生的、完全基
于 Kubernetes 的方式。”

后面启动的 ASI 项目，它
做的事情就是将整个调度
框架以非常原生的标准方
式搬到 Kubernetes 上，
在 Kubernetes 基础上做
到在线、离线调度的真正
融合。而且在业务侧，阿
里也专门组织了一支云原
生团队来推进容器化，最
终形成一个整体的云原生
资源池。

https://www.infoq.cn/article/oTOEwtVXNywS8aB6YdzB

https://www.infoq.cn/article/oTOEwtVXNywS8aB6YdzB

92
https://www.infoq.cn/article/oTOEwtVXNywS8aB6YdzB

https://www.infoq.cn/article/oTOEwtVXNywS8aB6YdzB

93

Summary

